拉曼光谱仪 拉曼光谱仪原理及应用

拉曼光谱?

拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

延伸阅读

拉曼光谱应用?

拉曼光谱学主要用于有机化学中的结构鉴定和分子相互作用。它是X光谱学的补充,可以识别特殊的结构特征或特征组。东古阿卜杜勒·拉赫曼位移的大小、强度和形状是识别化学键和官能团的重要依据。拉曼光谱也可以用偏振特性来判断分子的异构体。

拉曼光谱图怎么分析?

拉曼光谱图分析是一种利用拉曼散射原理来分析物质结构的方法。拉曼散射原理是通过探测物质中的分子振动来分析物质结构的原理。分析拉曼光谱图的步骤主要包括:首先根据拉曼光谱图观察分子所属的分子类型;其次观察拉曼光谱图的位移和强度,以及拉曼光谱图上的谱线的宽度;最后根据上述观测结果,分析物质的结构和性质。

拉曼光谱和X光谱的区别是什么?

拉曼光谱与X光谱的区别:

1.区别:X光谱又叫做X吸收光谱,它是X光子与分子振动、转动的量子化能级共振产生吸收而产生的特征吸收光谱曲线。要产生这一种效应,需要分子内部有一定的极性,也就是说存在分子内的电偶极矩。在光子与分子相互作用时,通过电偶极矩跃迁发生了相互作用。拉曼光谱是一种阶数更高的光子——分子相互作用,要比X吸收光谱的强度弱很多。但是由于它产生的机理是电四极矩或者磁偶极矩跃迁,并不需要分子本身带有极性,因此特别适合那些没有极性的对称分子的检测。

2.联系:拉曼光谱和X光谱都发生在X区。

拉曼光谱技术背景?

1928年印度科学家拉曼实验发现单色入射光透X物质中的散射光包含与入射光频率不同的光,即拉曼散射。拉曼因此获得诺贝尔奖。受散射光强度低的影响,拉曼光谱经历30年的应用发展限制期。直到1960年后,激光技术的兴起,拉曼光谱仪以激光作为光源,光的单色性和强度大大提高,拉曼散射信号强度大大提高,拉曼光谱技术才得以迅速发展。每一种物质都有其特征的拉曼光谱,利用拉曼光谱可以鉴别和分析样品的化学成分和分子结构;通过分析物质在不同条件下的系列拉曼光谱,来分析物质相变过程,也可进行未知物质的无损鉴定。拉曼光谱技术可广泛应用于化学、物理、医药、生命科学等领域。

拉曼光谱的各个参数代表什么?

1、 焦长:主要和分辨率相关,其他条件相同的情况下,焦长越长,分辨率越高,但是相应的光通量也会降低。

2、 相对孔径:即前面提到的F数,主要和焦长与准直镜大小有关,焦长越长,就需要更大面积的准直镜和光栅及后面的聚焦镜,只有这样才能保证更大的光通量,使信号更强。

3、 光谱范围:这个主要是由光栅决定的,主要看厂家光栅库型号数量。

4、 光栅尺寸:这个特别需要注意,如果光谱仪焦长变长,光栅尺寸一定需要变大,要不然光通量会减少特别多。

5、 分辨率:分开两条临近谱线能力的度量,是光谱仪最重要指标,主要和光栅刻线数、焦长、狭缝宽度、系统的光学像差以及内部结构有关,可近似认为符合以下公式:R∝n·F/W (n-光栅线数;F-焦距;W-狭缝宽度);公认的分辨率是用PMT探测器测量出来的,测量条件是在1200g/mm光栅,435nm处,狭缝宽度为10um。

6、 波长重复性:光谱仪返回原波长的能力,体现了波长驱动机械和整个仪器的稳定性。

7、 波长准确性:光谱仪设定波长与实际波长的差值。

8、 光谱线色散:分辨率的另一种表征,分辨率越高,线色散越大。

9、 杂散光:光谱仪性能优劣最直观的参数之一,

拉曼光谱具体是用来做哪一方面表征的?

拉曼(raman)光谱作为现代物质分子结构研究的重要方法之一,被广泛应用于物质微结构的研究,其主要是通过拉曼位移(拉曼振动频率)δv来确定物质的结构。

它提供的结构信息是关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团,进而进行分子结构的识别。

拉曼位移就是分子振动或转动频率,它与入射线频率无关,而与分子结构有关,这就是拉曼效应的基本内涵,也就是通过对物质(包括岩石矿物等)的拉曼光谱的测定能够鉴定和研究物质分子基团结构的基本原理。

每一种物质有自己的特征拉曼光谱,拉曼谱线的数目、位移值的大小和谱带的强度等都与物质分子振动和转动能级有关。

又来分析矿物时要先注意其特征峰的变化,来分析内部结构的变化。例子嘛,具体问题具体分析喽!


您可能感兴趣