离心式空压机优缺点?
离心式压缩机之所以能获得这样广泛的应用,主要是比X式压缩机有以下一些优点。
1、离心式压缩机的气量大,结构简单紧凑,重量轻,机组尺寸小,占地面积小。
2、运转平衡,操作可靠,运转率高,摩擦件少,因之备件需用量少,维护费用及人员少。
3、在化工流程中,离心式压缩机对化工介质可以做到绝对无油的压缩过程。
4、离心式压缩机为一种回转运动的机器,它适宜于工业汽轮机或燃汽轮机直接拖动。对一般大型X,常用副产蒸汽驱动工业汽轮机作动力,为热能综合利用提供了可能。但是,离心式压缩机也还存在一些缺点。
离心式压缩机的缺点:1、离心式压缩机还不适用于气量太小及压比过高的场合。2、离心式压缩机的稳定工况区较窄,其气量调节虽较方便,但经济性较差。3、离心式压缩机效率一般比X式压缩机低。离心式压缩机中气压的提高,是靠叶轮旋转、扩压器扩压而实现的。根据排气压力的高低,可将其分为三类:离心通风机,风压在10-15kPa范围或小于此值;离心鼓风机,风压在15~350kPa范围;离心压缩机,风压在350kPa以上。离心式压缩机用于压缩气体的主要部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体的压力能的。
延伸阅读
离心式空压机有没有加卸载?
离心式空压机是有加卸载的。原理:离心式空压机通过比较设定压力和实际排气压力来控制空压机吸入口的导叶阀开度和排气口的放空阀开度来实现。
加载时:导叶阀开度增加,机器排气口的放空阀关闭。
卸载时:进口导叶阀关闭,放空阀全开。空压机不产气。关于设定方式,我知道的有两种:
1.分别设定加卸载压力(比如:6.3bar以下加载,超过7.2bar卸载)
2.设定目标压力,设定一个正偏差压力允许范围(比如:设定6.5bar,正偏差允许0.5bar,这样机器低于6.5bar就一直加载,超过7.0bar就卸载) 导叶阀开度的控制过程不是简单的开闭,开度的大小是一个根据系统用气量不断调整的过程。
离心式空压机的工作原理?
离心式压缩机用于压缩气体的主要工作部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体压力能的。 更通俗地说,气体在流过离心式压缩机的叶轮时,高速旋转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。 显然,叶轮对气体作功是气体压力得以升高的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度u2密切相关的:u2数值越大,叶轮对气体所作的功就越大。而u2与叶轮转速和叶轮的外径尺寸有如下关系: 式中 D2–叶轮外缘直径,m; n–叶轮转速,r/min。 因此,离心式压缩机之所以要有很高的转速,是因为:
1)对于尺寸一定的叶轮来说,转速n越高,气体获得的能量就越多,压力的提高也就越大;
2)对于相同的圆周速度(亦可谓相同的叶轮作功能力)来说,转速n越高,叶轮的直径就可以越小,从而压缩机的体积和重量也就越小;
3)由于离心式压缩机通过一个叶轮所能使气体提高的压力是有限的,单级压比(出口压力与进口压力之比)一般仅为1.3~2.0。如果生产工艺所要求的气体压力较高,例如全低压空分设备中离心式空气压缩机需要将空气压力由0.1MPa提高到0.6~0.7MPa,这就需要采用多级压缩。那么,在叶轮尺寸确定之后,压缩机的转速越高,每一级的压比相应就越大,从而对于一定的总压比来说,压缩机的级数就可以减少。所以,在进行离心式压缩机的设计时,常常采用较高的转速。但是,随着转速的提高,叶轮的强度便成了一个突出的矛盾。目前,采用一般合金钢制造的闭式叶轮,其圆周速度多在300m/s以下。 另外,对于容量较小的离心式压缩机而言,由于风量较小,叶轮直径也较小,可采用较高的转速;而容量较大的压缩机,由于叶轮直径较大,相应地转速也应低一些。例如,为国产3200m3/h空分设备配套的DA350-61型离心式压缩机,转速为8600r/min;而为国产10000m3/h空分设备配套的1TY-1040/5.3型空气压缩机,转速为6000r/min。