矩形的定义及性质和判定方法(矩形的定义及性质和判定方法初中)

矩形的定义及性质和判定方法?

·矩形的性质:

1.矩形的4个内角都是直角;

2.矩形的对角线相等且互相平分;

3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;

4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。

5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质

6.顺次连接矩形各边中点得到的四边形是菱形

·矩形的判定:

①定义:有一个角是直角的平行四边形是矩形

②定理1:有三个角是直角的四边形是矩形

③定理2:对角线相等的平行四边形是矩形④对角线互相平分且相等的四边形是矩形

矩形的面积:S=长×宽=ab。

矩形是什么形状?

矩形是一种特殊的平行四边形,两组对边分别平行并且相等,四个角都是直角,也可以说就是我们所说的长方形。矩形就是长方形

矩形包括哪些图形?

准确地说,矩形包括普通的矩形(不是每一边的长度都相等)以及特殊的矩形(即正方形,正方形的每条边长度都相等)。矩形本身是特殊的平行四边形。矩形的性质:由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形的性质大致总结如下:

(1)矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;

(2)矩形的四个角都是直角;

(3)矩形的对角线相等;

(4)具有不稳定性(易变形)。